Equispaced Pareto front construction for constrained bi-objective optimization

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equispaced Pareto front construction for constrained bi-objective optimization

We consider constrained biobjective optimization problems. One of the extant issues in this area is that of uniform sampling of the Pareto front. We utilize equispacing constraints on the vector of objective values, as discussed in a previous paper dealing with the unconstrained problem. We present a direct and a dual formulation based on arc-length homotopy continuation and illustrate the dire...

متن کامل

Equispaced Pareto Front Construction for Constrained Multiobjective Optimization

We consider constrained biobjective optimization problems. One of the extant issues in this area is that of uniform sampling of the Pareto front. We utilize equispacing constraints on the vector of objective values, as discussed in a previous paper dealing with the unconstrained problem. We present a direct and a dual formulation based on arc-length homotopy continuation and illustrate the dire...

متن کامل

A New Algorithm for Constructing the Pareto Front of Bi-objective Optimization Problems

Here, scalarization techniques for multi-objective optimization problems are addressed. A new scalarization approach, called unified Pascoletti-Serafini approach, is utilized and a new algorithm to construct the Pareto front of a given bi-objective optimization problem is formulated. It is shown that we can restrict the parameters of the scalarized problem. The computed efficient points provide...

متن کامل

Adaptive weighted-sum method for bi-objective optimization: Pareto front generation

This paper presents a new method that effectively determines a Pareto front for bi-objective optimization with potential application to multiple objectives. A traditional method for multiobjective optimization is the weighted-sum method, which seeks Pareto optimal solutions one by one by systematically changing the weights among the objective functions. Previous research has shown that this met...

متن کامل

Pareto front of bi-objective kernel-based nonnegative matrix factorization

The nonnegative matrix factorization (NMF) is a powerful data analysis and dimensionality reduction technique. So far, the NMF has been limited to a single-objective problem in either its linear or nonlinear kernel-based formulation. This paper presents a novel bi-objective NMF model based on kernel machines, where the decomposition is performed simultaneously in both input and feature spaces. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical and Computer Modelling

سال: 2013

ISSN: 0895-7177

DOI: 10.1016/j.mcm.2010.12.044