Equispaced Pareto front construction for constrained bi-objective optimization
نویسندگان
چکیده
منابع مشابه
Equispaced Pareto front construction for constrained bi-objective optimization
We consider constrained biobjective optimization problems. One of the extant issues in this area is that of uniform sampling of the Pareto front. We utilize equispacing constraints on the vector of objective values, as discussed in a previous paper dealing with the unconstrained problem. We present a direct and a dual formulation based on arc-length homotopy continuation and illustrate the dire...
متن کاملEquispaced Pareto Front Construction for Constrained Multiobjective Optimization
We consider constrained biobjective optimization problems. One of the extant issues in this area is that of uniform sampling of the Pareto front. We utilize equispacing constraints on the vector of objective values, as discussed in a previous paper dealing with the unconstrained problem. We present a direct and a dual formulation based on arc-length homotopy continuation and illustrate the dire...
متن کاملA New Algorithm for Constructing the Pareto Front of Bi-objective Optimization Problems
Here, scalarization techniques for multi-objective optimization problems are addressed. A new scalarization approach, called unified Pascoletti-Serafini approach, is utilized and a new algorithm to construct the Pareto front of a given bi-objective optimization problem is formulated. It is shown that we can restrict the parameters of the scalarized problem. The computed efficient points provide...
متن کاملAdaptive weighted-sum method for bi-objective optimization: Pareto front generation
This paper presents a new method that effectively determines a Pareto front for bi-objective optimization with potential application to multiple objectives. A traditional method for multiobjective optimization is the weighted-sum method, which seeks Pareto optimal solutions one by one by systematically changing the weights among the objective functions. Previous research has shown that this met...
متن کاملPareto front of bi-objective kernel-based nonnegative matrix factorization
The nonnegative matrix factorization (NMF) is a powerful data analysis and dimensionality reduction technique. So far, the NMF has been limited to a single-objective problem in either its linear or nonlinear kernel-based formulation. This paper presents a novel bi-objective NMF model based on kernel machines, where the decomposition is performed simultaneously in both input and feature spaces. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical and Computer Modelling
سال: 2013
ISSN: 0895-7177
DOI: 10.1016/j.mcm.2010.12.044